
A quantitative structure-retention relationship (QSRR) model has
been developed for the gas chromatographic retention times of 37
phenolic derivatives in a DB-5 non-polar column (95% dimethyl
and 5% diphenyl-polysiloxane). As a first step, multiple linear
regression (MLR) was employed to gain informative descriptors that
can predict the retention times of these compounds. Descriptors
appearing in the MLR model are categorized as topological and
geometric parameters that comply with the applied column.
Furthermore, each molecular descriptor in this model was
examined to unfold the relationship between molecular structures
and their retention times. Then, a 4-4-1 neural network was
developed using the descriptors selected by the MLR model. The
comparison of the standard errors and correlation coefficients
reveals the superiority of artificial neural networks (ANN) over the
MLR model. This refers to the fact that the retention behaviors of
molecules display non-linear characteristics. The consistency and
reliability of ANN model was investigated using the L4O cross-
validation technique. The obtained results are closely in compliance
with the experiment. Moreover, the mean effect of descriptors
shows that Kier symmetry index is the most important factor
affecting the retention behavior of molecules.

Introduction

Gas chromatography (GC) is mainly used as a criterion of
purity degree in organic compounds. This technique is mostly
utilized to measure the efficiency of the purification processes.
Theoretically, the retention times can be used for the identifica-
tion of compounds. This compound identification is often com-
pleted by comparing the GC peak with standard samples of the
suspected material. However, obtaining samples of pure standard
materials is not always possible. Thus, it seems essential to
develop a theoretical model for estimating the retention times.

Quantitative structure-retention relationships (QSRRs) repre-
sent a powerful tool in chromatography. The principal aim of
QSRR is to predict retention data from the molecular structure.
One of the crucial problems is how to represent molecular struc-
ture for QSRR. Generally, the descriptors encoding the
molecular structure are classified as physicochemical, quantum-
chemical, topological, etc., descriptors. A key to building suc-

cessful QSRR models is a proper feature selection (i.e., selection
of the most relevant descriptors from a large number of inputs)
(1–2). Thus, it is essential to select the method that has been
described the most, and in most cases, the multiple linear regres-
sion (MLR) technique has been used for this purpose (1–8).

Also, the use of artificial neural networks (ANN) in the mod-
eling of retention behavior and optimization of conditions in
chromatography has been studied (1,2,9–15). Compared to MLR,
ANN is a more flexible modeling methodology because both
linear and non-linear functions can be used (or combined) in the
processing units. This allows the description of more complex
relationships between a high-dimensional descriptor space and
the given retention data, which may lead to better predictive
power of the resulting ANN model compared to MLR.

In this study, the retention times of phenol derivatives have
been predicted using ANN as modeling tool, and usefulness of
the neural network was compared with the MLR technique.

Theory

ANN
ANNs are mathematical systems that simulate biological

neural networks (16–18). They consist of processing elements
(nodes, neurons) organized in layers. Back-propagation neural
networks (BPNNs) are most often used in analytical applications.
The BPNN receives a set of inputs, which are multiplied by each
node and then a nonlinear transfer function is applied. The goal
of training the network is to change the weights between the
layers in a direction to minimize the output errors. The changes
in the values of the weights can be obtained using Eq. 1:

∆Wij(n) = ηδiOj + αWij(n – 1) Eq. 1

where ∆Wij is the change in the weight factor for each network
node, δi is the actual error of node i, and Oj is output of node j.
The coefficients η and α are the learning rate and the
momentum factor, respectively. The goal of training process is to
find the optimum weights, and the process starts with random
connection weights. The computed output (Opm) is compared to
target value (Tpm) (i.e., experimental retention times in this
work), and an error term (Tpm – Opm)2 is determined. The mean
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square error (MSE) is used as a criterion for finalizing the
learning process and computed using the following equation:

MSE = (Tpm – Opm)2 Eq. 2

where M is the number of neurons in output layer and P denotes
the number of patterns (i.e., the number of experimental reten-
tion time data employed in the training process of the network).
The number of neurons in the hidden layer and epochs has been
optimized by minimizing MSE term.

Cross-validation technique
The consistency and reliability of a method can be explored

using the cross-validation technique (19). Two different strate-
gies of leave-one-out (LOO) and leave-multiple-out (LMO) can be
carried out in this method. In the LOO strategy, by deleting each
time one object from the training set, a number of models will be
produced. Obviously, the number of models produced by the
LOO procedure is equal to the number of available examples n
(n = 37). Prediction error sum of squares (PRESS) is a standard
index to measure the accuracy of a modeling method based on
the cross-validation technique. Based on the PRESS and SSY
(sum of squares of deviations of the experimental values from
their mean) statistics, the Q2

LOO can be easily calculated by Eq. 3:

Q2 = 1 – Eq. 3LOO

In the case of LMO, M represents a group of randomly selected
data points that would be left out at the beginning and be pre-
dicted by the model, which was developed using the remaining
data points. So, M molecules are considered as prediction set.
The R2

LMO can be calculated:

R2 = – 1 Eq. 4

It is common to choose 10–15% of the total number of
molecules to be left out. Therefore, in the present work, calcula-
tion of R2

LMO was based on 60 random selections of groups of
four samples. The higher the Q2

LOO or R2
LMO the higher the pre-

dictive power of the model. The detailed description of this
method can be found elsewhere (19).

Experimental

Data set
The retention times of a series of phenol derivatives con-

sisting of 37 molecules were taken from the literature (20) as
the data set. The applied approach in this reference involves the
use of fused-silica, wide-bore, and open-tubular columns with
different polarities. The column used in this work is a non-
polar DB-5 (30 m × 0.53 mm i.d., cross-linked and chemically
bonded with 95% dimethyl and 5% diphenyl-polysiloxane,
0.83-µm or 1.5-µm film thickness). This column is connected
to an injection tee and an electron capture detection system
(ECD). Chromatographic conditions were: column tempera-
tures programmed from 150 to 275°C at a rate of 3°C/min.
Injector and detector temperatures were 250°C and 320°C,
respectively. Helium and nitrogen were used as a carrier and
makeup gases, and the flow rate of these gases were 6 mL/min
and 20 mL/min, respectively. The interaction between the
phenol derivatives and the stationary phase of the columns
makes the derivatives separate.

In the present work, the relationship between the structure
and the retention times of these compounds has been studied in
the aforementioned DB-5 column. Experimental retention times
of these compounds are illustrated in Table I. The distribution of
experimental data and the retention time values for the full set of
37 derivatives of phenol is shown in Figure 1.

Descriptor generation
The selection and calculation of the structural descriptors as

numerical encoded parameters reflecting the chemical struc-
tures is regarded as an essential step in every quantitative struc-
ture-activity relationship (QSAR) and QSRR study. To calculate
the molecular descriptors, the three-dimensional structures of
the studied molecules were generated and optimized using semi-
empirical, quantum-chemical methods of AM1 Hamiltonian
implemented in a Hyperchem package (21). In the present study,
12 molecular descriptors were produced by applying the
Hyperchem package after improving their structures. Then

Figure 1. The distribution of the experimental data points for the training, test,
and prediction sets.

Figure 2. Effect of percent of prediction set on the squared correlation
coefficient of (training set + prediction set) and prediction set in MLR.
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Dragon software (version web 5) was also utilized for producing
additional descriptors (22). Dragon software has been widely
used for calculating chemical descriptors in many QSRR and
QSAR studies (23–26). The calculated descriptors using this soft-
ware were divided into 20 groups as shown in Table II. A total of
1661 descriptors were calculated for each molecule using this
software. Finally, a total of 301 (289 from Dragon + 12 from
Hyperchem) descriptors were calculated for each compound.
These descriptors were obtained from a large number of descrip-
tors after removing the parameters, which have more than 10%
constant or zero values.

Regression analysis
Generation models were formed by the use of a step-wise mul-

tiple linear regression procedure. Only one of the variables from
pairs with R > 0.95 was used in modeling. From 301 original
descriptors, 100 descriptors were eliminated, and the remaining

ones were used for the generation of models by applying the
SPSS/PC software package (27). For regression analysis, data set
was randomly divided into two groups: training and prediction
sets. For performing this work, we select randomly 20% of this
data set and put it in prediction set, and all others were put in
training set. The effect of the percent of a prediction set on the
data set was considered in this work. The results of this study are
shown in Figure 2. As can be seen in Figure 2, if the percent of
the prediction set is very low, there will be an uncertainty in the
squared correlation coefficient of prediction set in comparison to
the main data set; also, if the percent of the prediction set is very
high, the obtained model cannot be as complete and as oral so as
to predict the retention time accurately. Really, there is an
optimum range for the percent of prediction set. As can be seen
in Figure 2, it can be said if the percent of prediction set from
main data set is between 15–40%, the model constructed by the
training set can predict the prediction set as well as training set.

Of course because the nature of selection of
prediction set from main data set is random,
Figure 2 cannot exactly be repeated with the
exact same range, but the behavior shown in
Figure 2 is quite fixed.

The applied step-wise procedure for the
selection of descriptors combines forward
and backward procedures. When new vari-
ables enter the equation, complexity of inter-
correlations will cause a change in the
amount of the variance, which is explained
by certain variables. When new variables
enter, a variable sometimes loses some parts
of its predictive validity, and in this case the
stepwise method will automatically remove
the weakened variable. The mathematical
equation describing the model was con-
structed by using four criteria: multiple cor-
relation coefficient (R), standard error (SE),
F statistic, and the number of descriptors in
the model. High R and F values, low stan-
dard error, the least number of descriptors,
and high ability for prediction are the notice-
able features of the best MLR model. The fea-
tures of the best equation are illustrated in
Table III.

The break-point MLR (BMLR) algorithm
was used in order to avoid over-correlation of
the regression equations (28). This is done
through monitoring the increase of R2 in the
equations with a successive number of
descriptors involved. This procedure, known
as the break-point technique, shows the
break-point (the change in the slope) in the
plot of R2 versus the number of descriptors
added (Figure 3). The procedure was stopped
when the difference between R2 of the two
consequent regression equations was less
than or equal to 0.02. Figure 3 reveals the
notion that increasing the number of param-
eters only up to four has a large influence on
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Table I. Experimental, ANN and MLR Calculated Values of Retention Times Together with
the Values of the Descriptors Appearing in the Model*

No Component Descriptor Retention Time (min)

Training set S0k Tie R5v+ Ats4m RTANN RTMLR RTEXP

1 Phenol 15.398 19.669 0.009 2.187 5.741 4.595 4.69
2 2-Methylphenol 19 26.828 0.015 4.196 6.137 6.14 5.68
3 4-Methylphenol 18 25.679 0.011 3.804 6.156 5.991 6.21
4 2,6-Dimethylphenol 17.759 34.933 0.01 7.044 6.787 6.407 7.08
5 2,4-Dimethylphenol 21.549 33.703 0.011 6.652 7.684 8.246 7.34
6 2,3-Dimethylphenol 21.549 33.85 0.011 7.419 7.72 8.319 7.96
7 2-Chlorophenol 22.459 44.696 0.015 5.778 7.968 8.373 7.34
8 3-Chlorophenol 22.459 32.782 0.018 9.116 7.593 8.187 7.86
9 3,4-Dimethylphenol 22.496 32.557 0.01 7.027 8.264 8.872 8.46

10 2-Chloro-5-methylphenol 24.946 52.412 0.024 8.539 9.482 9.084 9.12
11 2,6-Dichlorophenol 23.612 26.38 0.014 17.593 8.696 9.924 9.73
12 4-Chloro-2-methylphenol 24.946 39.905 0.022 10.173 9.251 9.271 9.73
13 3,5-Dichlorophenol 23.612 58.023 0.017 24.269 10.066 10.68 11.02
14 2,4-Dichlorophenol 27.765 84.116 0.019 17.352 11.873 12.391 11.02
15 2,4,6-Trichlorophenol 28.731 47.629 0.019 37.389 13.864 14.239 12.85
16 2,3-Dichlorophenol 27.765 148.271 0.017 12.708 14.06 13.104 12.01
17 3,4-Dichlorophenol 27.765 56.69 0.019 12.466 11.424 11.539 12.51
18 2,3,6-Trichlorophenol 33.347 65.985 0.045 24.522 14.613 12.939 13.93
19 2-Nitrophenol 29.996 40.753 0.015 12.646 13.205 12.935 12.51
20 2,3,5-Trichlorophenol 33.347 63.073 0.046 27.86 14.312 13.1 15.02
21 2,3,5,6-Tetrachlorophenol 32.243 284.615 0.049 39.674 17.257 16.502 17.71
22 2,3,4,6-Tetrachlorophenol 39.013 153.543 0.045 44.318 18.249 19.042 17.96
23 2,3,4-Trichlorophenol 33.347 84.79 0.019 24.281 16.153 15.994 16.81
24 4-Nitrophenol 27.329 121.262 0.01 9.229 14.096 12.913 15.69
25 Pentachlorophenol 37.021 473.865 0.047 59.47 22.936 23.824 22.96
26 2,5-Dinitrophenol 43.961 39.263 0.013 21.038 20.404 21.284 20.51
27 2,5-Dibromotoluene* 25.856 24.989 0.085 25.184 3.406 4.138 3.16
28 2,2',5,5'-Tetrabromobiphenyl* 48.435 62.564 0.053 80.908 24.776 25.244 25.16
29 2,4-Dibromophenol† 27.765 39.443 0.026 61.235 16.023 15.075 16.02
Prediction set
30 3-Methylphenol‡ 19 25.747 0.014 4.948 6.203 6.303 6.05
31 2,5-Dimethylphenol§ 22.496 33.861 0.015 6.956 7.845 8.345 7.08
32 4-Chlorophenol‡ 19.998 30.726 0.02 5.537 6.362 6.309 8.19
33 4-Chloro-3-methylphenol‡ 24.946 39.086 0.017 9.021 9.375 9.691 10.18
34 2,5-Dichlorophenol§ 27.765 125.794 0.052 12.708 10.76 9.003 10.71
35 2,4,5-Trichlorophenol‡ 33.347 52.937 0.047 24.281 14.72 12.512 15.02
36 3-Nitrophenol§ 29.996 28.721 0.013 10.58 13.302 12.784 13.69
37 2,3,4,5-Tetrachlorophenol§ 39.013 312.665 0.049 39.433 21.021 20.46 20.51

* Internal Standard used in GC researches. † Surrogate used in GC researches.
‡ and † refer to test and prediction sets in ANN model, respectively.



improving correlation. Therefore, we have chosen four descrip-
tors as the optimum number of parameters. The descriptors
appearing in this model are Kier symmetry index (S0k), E-state
topological parameter (Tie), getaway-weighted by atomic van der
Waals volumes (R5v+), and 2D autocorrelations-weighted by
atomic masses (Ats4m), whose definitions are given in Table III.
As it can be seen from the correlation matrix (Table IV), there is
no significant correlation between the selected descriptors.

Neural network generation
In order to generate and educate the neural network in this

study, the Matlab 7.1 package was used (29). For ANN genera-
tion, data set was divided into three groups: training, test, and
prediction sets. The training set, comprising 29 molecules, was
used for the model generation. However, the test set, com-
prising four molecules, was used to maintain the overtraining.
The prediction set, comprising four molecules, was used to eval-
uate the generated model. It is worth noting that the molecules
in the test and prediction sets were just the same as those
selected as prediction set in MLR model. The effect of the per-
cent of prediction set and test set from the main data set on
accuracy of results has been considered in Figure 4. Any simple
neural network can fit any data set with any complexity. The
power of prediction in application of neural networks for non-
linear pattern recognition is a very important factor. When the
percent of the test set is increased as well as percent of predic-
tion set, the quality of fitting of neural network, which has been
constructed by means of training set, are slowly reduced. As
shown in Figure 2 for MLR, there is an optimum percent range
for selecting the prediction and test set in a neural network con-
struction. This optimum range ideally is the range in which the
accuracy of constructed network for training set, prediction set,
and test set are equal. But in practice the word “equal” is
replaced by “quite equal”. As can be seen in Figure 4, the best
range we can select is about 10% for test set and 10% for pre-
diction set. If the percent of the prediction set and test set is very
low, the constructed neural network cannot predict the test set
well; and if the percent of the prediction set and test set is very
high, the pattern recognition for neural network will be diffi-
cult. Thus, in these two forms, the obtained accuracy of the con-
structed neural network for these three sets by constructed
network will not be “quite equal.” Of course, in this work we
used equal percentages for prediction set and test set. Results of

Figure 4 can be repeated, but because of the
random nature of selecting the prediction and
test sets, the values will be changed partially,
but the oral behavior will be constant.

Descriptors that appeared in the MLR model
were used to generate the network as its
inputs. A three-layer network with a tangent
sigmoidal transfer function was designed.
Before training, the input and the output
values were normalized between –1 and +1.
The appropriate number of nodes in the hidden
layer was identified through training the net-
work with a diverse number of nodes in the
hidden layer. Learning rate and momentum
values and type of transfer function were opti-
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Table III. Selected Descriptors of Multiple Linear Regression

Type of Mean
Descriptor descriptor Notation Coefficient effect

Kier symmetry index Topological S0k 0.528 (± 0.041) 14.592
E-state topological parameter Topological Tie 0.01448 (± 0.003) 1.125
Getaway (R maximal autocorrelation of lag 5 / Geometric R5v+ –107.857 (± 14.570) –2.656
weighted by atomic van der waals volumes)

2D autocorrelations (Broto-Moreau utocorrelation Topological Ats4m 0.09311 (± 0.018) 2.004
of a topological structure-lag4 / weighted by atomic masses

Constant –3.053(± 0.915)

R2
training = 0.966, R2

prediction = 0.932, SEtraining = 0.989, SEprediction = 1.391, F = 171.605

Figure 3. Influence of number of descriptors on R2 of MLR model.

Table II. Groups of the 1661 Molecular Descriptors Generated
by Software Dragon

No. of No. of descriptors
Group name Dimensionality descriptors in model

Constitutional descriptors 0 48 5
Topological descriptors 2 119 14
Molecular walk counts 2 47 1
Connectivity indices 2 33 6
Information indices 2 47 10
2D autocorrelation descriptors 2 96 31
Edge adjacency indices 2 107 0
BCUT descriptors 2 64 16
Galvez topological charge indices 2 21 5
Eigenvalue-based indices 2 44 2
Randic molecular profiles 3 41 2
Geometrical descriptors 3 74 8
RDF descriptors 3 150 20
3D-MoRSE descriptors 3 160 82
WHIM descriptors 3 99 28
GETAWAY descriptors 3 197 58
Functional groups 1 152 0
Atom-centered fragments 1 120 0
Charge descriptors 1 14 0
Molecular properties 1 28 1
Sum 1661 289
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mized in a similar way. Architecture and specifications of ANN
model are given in Table V.

Results and Discussion

Regression analysis
The relationship between the structure of phenol derivatives

and their retention times in GC is the main objective of this
work. For this purpose, linear and non-linear models were
tested. The linear model (i.e., MLR) has been developed for two
purposes. First, step-wise multiple linear regression procedure
was used to select the suitable variables. It can be seen from Table
III that four descriptors of Kier symmetry index (S0k), E-state
topological parameter (Tie), getaway-weighted by atomic van der

Waals volumes (R5v+), and 2D autocorrelations-weighted by
atomic masses (Ats4m) were chosen out of 200 descriptors.
These descriptors can be classified as topological (S0k, Tie, and
Ats4m) and geometric (R5v+) descriptors. Because the DB-5 is a
non-polar column, the lack of electronic descriptors in the
model puts emphasis on the fact that polar interactions have no
important effect on the retention behavior of the molecules.
Thus, shape and symmetry of molecule, molecular mass or
volume, atomic distances in the molecule, and substructure of
molecule are effective parameters to mesh the molecules in the
stationary phase and identify their retention times. This fact can
be demonstrated through geometric and topological descriptors
apparent in the MLR model. Also, in order to obtain the extent of
each descriptor’s contribution in the prediction of retention
behavior of molecules, the mean effect of each parameter was
calculated. The mean effect of each descriptor can be regarded as
a measure of its part in retention behavior of molecules. These
descriptors may have negative and/or positive roles. The mean
effect for each descriptor is given in Table III, which illustrates
that S0k is the most essential parameter influencing the reten-
tion behavior of the molecules. The comparison of compounds 7,
8, and 32 demonstrates the effect of a shift in the symmetric
degree of molecules with similar substituents on the retention
behavior of aforementioned molecules. This comparison reveals
the fact that the higher symmetry a molecule has, the easier it
can enter stationary phase holes and display a longer retention
time. The S0k descriptor illustrates clearly the previously men-
tioned molecular behavior. The Tie descriptor is very similar to
distance connectivity indices, and it is computed through
electro-topological indices of adjacent atoms in H-depleted
molecular graphs and generally indicates the complexity of
molecular substructure. According to Table I, the more that sub-
stituents on phenyl ring takes place, the more complex the
molecular substructure will be, and the chance of its interfer-
ence with stationary phase and thus its meshing considerably
increases. The Tie descriptor well-defines the mentioned process.
Figure 5 properly elucidates the role of Tie descriptor. The differ-
ence between the retention times of three substituted com-
pounds 20 and 23 may be due to their molecular volume, which
in turn is controlled by atomic van der Waals volumes. This sug-
gests that the more voluminous a compound becomes, the
smaller longitudinal diffusion (B/U) will be due to existence of
less diffusion coefficient DM in mobility phase. As a result, a
short retention time is assessed. Furthermore, the more volumi-
nous a molecule is, the more difficult it is to enter the stationary
phase holes. This process has been illustrated through the nega-
tive role of R5v+ descriptor in the model. The comparison of
compounds with similar symmetries 3, 24, and 32 proves the fact
that the heavier a molecule is, the smaller diffusion coefficient
DS in film it exhibits; and consequently, it holds a less bias for
separation from stationary phase than its lighter molecules. This
process is considered one of the most common ones in chro-
matography. Thus, the appearance of Ats4m descriptor in model
will be easily justifiable. The detailed description of these descrip-
tors is given in literature (30). The second purpose of developing
this model was to assess the linear relationship between these
descriptors and the retention times of phenol derivatives. In the
MLR model, a R2 value for prediction set 0.932 was obtained,

Figure 4. Effect of percent of testing set on the squared correlation coefficient
of BPANN results. In this section the percent of validation set assumed equal
to percent of testing set.

Figure 5. Experimental retention times versus number of substituents plot.

Table IV. Correlation Matrix for the Four Selected Descriptors

S0k Tie R5v+ Ats4m

S0k 1
Tie 0.467 1
R5v+ 0.54 0.429 1
Ats4m 0.76 0.507 0.597 1
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which demonstrated this model’s ability to distinguish between
the retention behaviors of molecules.

Neural network generation
As a second step, the non-linear characteristics of the

descriptors were investigated. Therefore, a back propagation
artificial neural network was developed using the descriptors
appearing in the MLR model as its inputs. It is a common prac-
tice to optimize the parameters of number of nodes in the
hidden layer, learning rate, and momentum in developing a

reliable network. Different numbers of neurons in the hidden
layer were tested at an arbitrary learning rate and momentum,
epochs, and transfer function. The number of neurons in the
hidden layer with the minimum value of SE was selected as the
optimum number. Then, learning rate, momentum, epochs,
and transfer function were optimized in a similar way. The
experimental and calculated values of the phenol derivatives’
retention times using MLR and ANN methods as well as the
values of the descriptors appearing in the selected MLR model
are given in Table I. The specifications together with R2 and SE
for the training, test, and prediction sets are given in Table VI.
Comparison of the results in Table VI reveals superiority for
ANN model over the MLR model. It can be seen from Table VI
that the ANN model shows a SE of 1.013, which is much lower
than those of the MLR model. Also, the R2 value of 0.955 for the
ANN should be compared with a value of 0.932 for the MLR
model in the prediction set. For both models, several inconsis-
tencies exist between the sequences of the real and predicted
retention times. A summary of these inconsistencies is shown
in Figure 6. In this figure, components with predicted values
that have a diversion higher than 1 compared to their real ones

in two different directions are displayed with
heavier lines. It can be understood from the
figure that diversions and their gradients are
smaller in ANN model than MLR model; and
this fact, in turn, demonstrates the prediction
power of ANN model. Compounds 1, 11, 15,
16, 17, 24, and 32 show an incorrect order for
the ANN model, while the order of retention
times for compounds 7, 14, 15, 16, 20, 21, 22,
24, 31, 32, 34, and 35 is not correct for the
MLR model. Large deviation of −2.77 for the
MLR calculated value of the compound 24
should be compared with the large deviation
of −2.05 for the ANN calculated value of the
compound 16 counterpart.

Because of the small number of molecules
included in the data set, the cross-validation
method was used to evaluate the ability of the
constructed ANN model. In this method, four
species were removed randomly from the data

set each time, and the model was generated with the remaining
molecules (leave-4-out procedure) (19). Then the retention
time of the removed molecules was predicted using the gener-
ated model. This procedure was continued until each analyte
was predicted once. As a result, seven rounds of runs were
needed for cross-validation of the ANN model. The values
obtained using the cross-validation method for different groups
of compounds are given in Table VII. As can be seen from this
table, the results do not depend on the molecules in training
and prediction set.

Figure 7 shows the calculated retention times versus experi-
mental retention times for training, test, and prediction sets, and
a value of 0.978 for R2 was obtained from this plot. Figure 8
shows the plot of residuals compared to experimental values of
retention times for the ANN model. The propagation of the resid-
uals in both sides of zero indicates that no systematic error exists
in the development of the ANNs.

Figure 7. Experimental retention times versus calculated retention times plot.

Table V. Architecture and Specifications of the BPANN model

Number of nodes in the input layer 4
Number of nodes in the hidden layer 4
Number of nodes in the output layer 1
Number of iterations 36800
Learning rate 0.1
Momentum 0.85
Transfer function Tangent sigmoidal

Figure 6. Sequences of the real and predicted retention times of phenol derivatives using MLR and
ANN models.
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Conclusions

Two common methods of MLR and ANN were used to predict
the retention times of 37 derivatives of phenols. Both methods
seem invaluable, but the comparison of these methods shows the
superiority of ANN over that of the regression model. Also, the
ANN is able to predict the trend of variation in the values of
retention times for different derivatives, while the MLR has a
lower predictive ability in this regard. The superiority of ANN
over that of MLR reveals the fact that the retention times of sub-
stituted phenols manifest some nonlinear characteristics. On the
other hand, because the descriptors appearing in the MLR model
were used as inputs for the ANN, it can be included that the
former method is a suitable technique for choosing the inputs
for the neural networks. Moreover, the conformity between
selected descriptors and stationary phase of column is a vigorous
demonstration of results obtained.
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Figure 8. Experimental retention times versus residual plot.

Table VI. Statistical Results of ANN Model Compared to MLR Model

R2
training SEtraining R2

test SEtest R2
prediction SEprediction

ANN model* 0.981 0.754 0.992 0.5 0.955 1.013
MLR model† 0.966 0.989 – – 0.932 1.391

* Transfer function = Tangant sigmoidal, momentum = 0.85, learning rate = 0.1,
epochs = 36,800, initial weights were between –2 and + 2.

† Feature selection was based on stepwise method.

Table VII. The Results of Cross-Validation Test

Test model SE(T) SE(P) R2
cv

I 0.682 1.025 0.949
II 0.589 0.997 0.968
III 0.823 1.045 0.935
IV 0.796 1.103 0.958
V 0.741 0.996 0.951
VI 0.696 0.985 0.962
VII 0.775 1.121 0.947


